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Abstract— In this paper, we investigate the applicability
of deep learning methods to adapt and predict comfortable
human-robot proxemics. Proposing a network architecture,
we experiment with three different layer configurations, ob-
taining three different end-to-end trainable models. Using
these, we compare their predictive performances on data
obtained during a human-robot interaction study. We find
that our long short-term memory based model outperforms
a gated recurrent unit based model and a feed-forward
model. Further, we demonstrate how the created model can
be exploited to create customized comfort zones that can
help create a personalized experience for individual users.

I. INTRODUCTION

The advent of the ”AI era” machine learning, espe-
cially in the form of supervised deep learning [1], is
helping to accelerate the state-of-the-art in numerous
fields such as computer vision [2], self-driving cars [3]
and natural language processing [4]. A driving idea
is to automatically discover structure, namely input-
output correlations or features, in a given dataset that
can be used to predict the output for previously unseen
input configurations. To achieve this, algorithms have
to identify which inputs will improve their predic-
tive ability and learn to become invariant against the
unimportant ones. Considering this ability, machine
learning techniques can be a suitable tool to be utilized
within the Human-Robot Interaction (HRI) domain,
in particular learning from users how to predict and
respond to their social behaviours in an adequate way.

In this context, human-robot proxemics (interper-
sonal distances) is one of the topics that has attracted
the attention of researchers for over a decade, as it
influences how users perceive and interact with robots
[5][6][7]. Previous research focused on understanding
factors that could impact how human-robot proximity
is shaped. However, little work has been devoted to
allow robots to predict comfortable proximity towards
human users, for example via machine learning algo-
rithms [8]. This has motivated us to further investi-
gate the use of deep learning techniques in predicting
human-robot proxemics from experimental interaction
data. We believe that the multivariate normal cumula-
tive distribution function we learned around different
people can be used to build a realistic reward function.
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This can then help robot to learn realistic behaviours
using deep reinforcement learning algorithms.

In this paper we contribute to the HRI domain with
the following: (1) The development of a machine learn-
ing system from user data to predict suitable human-
robot proximity positions. This includes introducing a
deep-learning model that is trainable end-to-end and
proposing a pre-processing method to allow for the
smoothing of the user data representing discomfort. (2)
A comparative analysis of three model configurations
investigating their suitability and performance when
predicting human-robot proxemics.

II. RELATED WORK

Human-human interpersonal distances (proxemics)
is one of the non-verbal behaviours that shapes the
communication spaces between individuals. Vast re-
search has been done to understand how humans posi-
tion themselves within a given communication context
such as [9][10]. Hall [11] presented one of the pre-
dominant theories defining proxemics into four zones:
”intimate”, ”personal”, ”social” and ”public” distances.
His definition has served many researchers within the
human-robot interaction community to investigate how
human users position themselves when interacting
with a robot in a given context and environment. For
example, Walters et al. [12][7][13] presented studies
addressing the impact of different social behaviours on
human-robot proxemics. Satake et al. [14] contributed a
study on understanding a robot’s approach behaviour
and its influence on initiating interaction. Mumm and
Mutlu [6] presented an investigation based on the
theory presented by Argyle and Dean [9], where they
report that one of the main factors to influence distance
is disliking a robot.

Moreover, Takayama and Pantofaru [15] presented
a study using a mechanical-like robot to investigate
human-robot approaching distances in three scenarios:
the robot autonomously approaching the user, the robot
being teleoperated to approach the user, and the user
approaching the robot. One of the findings indicated
that pet owners as well as users that had previous
experience with robots had a smaller interpersonal
distance with the robot. In addition, they found gender
to have an effect on the interpersonal distance when
the robot gazed at the user. Złotowski et al. [16] pro-
vided empirical evidence on the influence of approach
angle on proximity while the user is either walking or
standing. Their results showed that when users were in



motion, they preferred the robot to approach them from
the right and left frontal directions, but when standing
it was acceptable for the robot to approach them from
all directions (front, left and right).

In addition, researchers also looked at techniques for
robots to learn the rules of such social interactions, for
example via the adaptive strategies presented by Rossi
et al. [17]. Some techniques focused on creating compu-
tational models that can enhance a robot’s capability in
path planning while considering social factors, such as
the work presented by [18], [19], [20]. Other techniques
include the work by Mitsunaga et al. [21] that used
reinforcement learning for adaptive distance selection
based on the user’s body signals, or Mead and Mataric
[8] proposing the use of Bayesian belief networks to
model the probability of success in a human-robot
interaction scenario. Kosinksi et al. [22], on the other
hand, looked at using fuzzy logic modeling to directly
learn and represent human-robot proxemics.

To our knowledge, little research has investigated
the applicability of deep learning on the human-robot
proxemics scenario so far. Hence we choose to inves-
tigate an end-to-end deep learning approach as we
believe that it provides a more automated way of
modeling influential factors. In this paper, we aim to
learn such models while leveraging previous work to
influence our choice of input features such as age,
gender, height, pet ownership and previous robotic
experiences.

III. DATA COLLECTION

The data used in our research is a subset of data used
in an earlier work by one of this paper’s co-authors,
which is presented in Konsinski et. al. [22].

The collected data is gathered from 27 Swedish par-
ticipants (13 female, 14 male). The participants average
age is 30.5 years (SD = 10.7) and the majority had little
to no experience with robots.

Data collection was setup in a motion capturing stu-
dio of 10 × 12.25 m equipped with a Qualisys system1

that was used to track reflective markers.
Within the tracked space, a telepresence Double

robot2, with four reflective markers on the corners of its
screen, has been used. In addition, reflective markers
have been attached to a glove and a hat given to
each participant to enable tracking of their positions.
Generally, the hat has been used to locate the position
of the participant, while the tracking of the glove has
been used to measure discomfort. The user was asked
to start raising their hand when they started to feel
uncomfortable and they could stop the robot by putting
their hand all the way up (stop gesture) - this is
explained in further detail in [22]. For the remainder
of this paper we will refer to this hand height as
”discomfort level”.

1http://www.qualisys.com
2http://www.doublerobotics.com/

The procedure for each participant started by giving
an introduction to the study and getting their informed,
signed consent. Before commencing to the study ses-
sions, the participant was asked to fill out a short
demographic questionnaire. The study consisted of five
short sessions, where Double would approached the
user from five different angles and stopped when the
user raised their hand and gestured a stop. The setup
is illustrated in Figure 1 and the order of approach was
randomized for each participant. After all sessions, the
participant was asked to fill a post-study questionnaire
followed by a short interview lead by the experimenter.

A. Extracted Data
Data has been extracted from the tracked recordings

of the motion capturing system and serves as the
bases for this work. We use a subset of this data, in
particular, we only include data tracked from three
angles (0, 45, 90) named A3, A4 and A5 in Figure 1.
In addition, we utilized the data collected during the
initial demographic questionnaire.

The following inputs are available to each algorithm:
• distance between participant and robot (in mm)
• angle of approach (in degree, available for angles:

0, 45, 90)
• gender (male, female)
• age (in years)
• previous experience with robots (5-point likert

scale)
• preferred writing hand (left, right)
• pet ownership (yes, no)
Using these values, the model predicts discomfort

during it’s approach towards the user.

IV. MACHINE LEARNING SETUP

We consider different deep neural network architec-
tures to predict a region where the robot should stop.
We use the topology described in Figure 2 and vary
the layer type of the fourth and fifth layers to create
different networks.

Fig. 2. The proposed topology of our networks, in which the fourth
and fifth layer can be configured to other layer types.

In total we test three different layers that are fre-
quently used in deep learning: (1) Feed-forward layers
(FF) [23], (2) Gated Recurrent Units (GRU) [24] and (3)



Fig. 1. The experimental setup of the motion capturing space with
an illustration of the approach angels, the Double robot and a user
in action. Only data from the three angles A3, A4 and A5 is used in
this paper. The image is adopted from [22]

Long Short-Term Memory (LSTM) [25]. Each model is
trained in a supervised fashion; that is the training set,
consisting of example inputs and desired outputs, is
fed into the network to learn the relationship between
them. The exact list of inputs is given in Section III-
A and the predicted output for all networks is the
perceived user discomfort.

We use the same general topology (Figure 2) for each
model, starting with an embedding layer that maps
all the features into a high dimensional space so that
the model can represent interaction between factors
more efficiently. This is followed by a FF layer with
128 hidden units as preparation for the core layers of
each model: (1) two LSTM layers, (2) two GRU layers
or (3) two FF layers. For each model, each core layer
has 25 hidden units. We follow the core layers with
another FF layer (10 hidden units) and then map the
captured information to the output. The network uses
sigmoid activation functions after each dense layer and
the two core layers. The weights of the network are
initialized using glorot uniform initialization [26] and
are optimized using the Adam [27] method.

1) Feed-forward Layer: The FF Layer is one of the old-
est layer types for neural networks and is conceptually
quite simple. Mathematically the FF layer is defined as:

FF(~x) = σ(W~x) +~b (1)

Where ~x is the input vector, W is a weight matrix and
σ is a non-linear activation function.

The FF layer is used in the constant part of the
architecture (see Figure 2) and, for one model, as an
option of the core layers. Using them instead of LSTM

or GRU layers creates a sequential, feed-forward model
which, in our case, acts as a baseline to estimate the
performance of the other models.

2) Long Short-Term Memory: Considering that our
data has temporal dependencies, we use recurrent lay-
ers to learn from the input features of the system. At
first, LSTM layers were introduced to address the van-
ishing gradient problem in recurrent architectures [28]
and since then the model has proven to be very suc-
cessful in learning long term temporal dependencies in
a variety of tasks [29]. It works by using gated units
to control how the information propagates through
the network, i.e. three gates: input gate, forget gate
and output gate, are used for controlling the cell. In
our study, we would like to use LSTM for learning
temporal dependencies to build a prior model for robot.

3) Gated Recurrent Unit: A Gated Recurrent Unit
(GRU) is a simplification of aforementioned LSTM
layer. It has less gates but achieves similar performance
as a LSTM [30]. The first successful application of a
GRU is in the field of Neural Machine Translation [31]
and has since become popular in many tasks as in
[32]. We hope the GRU model can serve as another
model that can learn the temporal dependences in our
dataset.Direct: r = 0.1()

V. ANALYSIS AND RESULTS

In this section we introduce the modeling process of
the topology presented in Figure 2 using LSTM layers
as an example. Then we show the results of comparing
the three models (FF, GRU and LSTM based) using
human-robot proxemics data.

As a first step we convert the data into a machine
learning friendly format by applying a smoothing tech-
nique and generating a statistical representation of the
data. We normalize all discomfort levels from the three
angles of each participant by fitting a Gaussian kernel
based Cumulative Distribution Function (CDF) to them
via kernel density estimation. The CDF is represented
mathematically by formula F(x) =

∫ x
− 8 f (t)dt, where

f (x) is any Gaussian function.
Figure 3 gives an example of the normalized discom-

fort levels for the robot approaching from Angle 0 in
relation to the probability of the robot making a stop.

After this initial smoothing of the output data, we
trained our system models (Figure 2) to learn the
relationship between the user data and the target CDF,
solving a regression task; this is illustrated in the exam-
ple shown in Figure 4. To produce a cleaner result, we
apply the same CDF smoothing technique to each of the
model outputs that we used for the target denoising;
this is illustrated in the exmaple shown in Figure 5.

Since we model the angle as a continuous variable
rather than a discrete one, we are able to generate
CDFs of the estimated discomfort from different un-
seen angles. Figure 6 shows an example of our model
predicting several unseen angles (generated by doing



Fig. 3. The relationship between the estimated Cumulative Distri-
bution Function (CDF) and the normalized discomfort level.

Fig. 4. The predicted probabilities values and its corresponded target
values. The blue line indicates the predicted probabilities whilst the
orange line shows the target CDF. We can observe that the generated
values oscillates up and down around the target CDF.

an interpolation between the known angles (0, 45, 90)).
We can see that the the model is able to generate similar
CDFs based on the three angles provided.

To better understand how our trained models relate
to findings in human-robot proxemics, we visualized
the discomfort level in relation to the robot’s space and
its position. In this case, we first applied a Gaussian
filter and selected discomfort probabilities from 0.2
(low discomfort level) to 0.8 (high discomfort level) as
the thresholds. Figure 7 illustrates this relationship and
highlights the two boundaries with labels 0.2 and 0.8,
thus indicating the region where the robot should stop.

Next, we conducted further analysis to investigate
the performances of the three deep learning layers
by using the average euclidean distances between the
model’s outputs and the target CDFs. Thus, we com-
pared the output of the three models using a test set
(10% of the dataset), in which we train the network 50

Fig. 5. The generated CDF by the model made with LSTM layers
and the target CDF. We can see that for this particular angle of the
participant, the two CDFs are almost indistinguishable.

Fig. 6. The interpolated angles between 0 and 90 degrees. In this
example, the generated CDFs are similar to the learned CDFs from
0, 45 and 90 degrees.

times for each model and compare their average accu-
racy. The comparative results are shown in Figure 8.

VI. DISCUSSION

In the analysis of the results, our approach reveals
several interesting discussion points. First, using the
given data inputs, our deep learning approach was
able to model and output proximity distances that are
suitable in the HRI context, as illustrated in Figure 7.
Considering the variability of human factors involved
in determining appropriate proximity, we can foresee
that deep learning approaches can be more suitable to
such variability in contrast to other machine learning
approaches. This is mainly due to the fact that classical
approaches need a feature engineering phase before
modeling the data inputs, while deep learning auto-



Fig. 7. The map of estimated probabilities of stopping on different
positions. The participant stands on the origin, i.e. (0,0). The sector
on the graph shows the area we consider. On this graph, only 0, 45
and 90 degrees are learned probabilities from the dataset. The other
angles are generated from interpolating the angles and then sent to
the model. The probability map is listed on the right side of the
graph. Blue color indicates probabilities less than 0.5 and red color
shows probabilities greater than 0.5.

Fig. 8. The comparison of the three different configurations. GRU
and LSTM have relatively good performance of fitting the target CDF.
However, a simple FF neural network does not perform very well.

matically develops such abstractions; this can be seen
in different research articles such as [1].

It is important to note that the introduction of a
data smoothing phase is crucial in creating a suitable
model to represent the input data. In our modeling
process, we proposed an automatic pre-processing step
that fits the CDFs to the data, thus allowing for better
predictive performance. In addition, the pre-processing
step allows the data to be defined statistically for
further analysis in the system’s pipeline.

Second, our approach illustrated that, using input
data from three angles, we are able to model and
predict a larger unseen region between the angles. This

feature is due to the fact that deep learning models
can accept continuous inputs and produce continuous
outputs, thus making it possible to generate CDFs
from unseen angles. One limitation we have noticed
is that when we use a trained model to generate the
CDFs over different angles for a single participant, the
result can sometimes have a sharp transition. From
Figure 7 we can observe that the probability transition
among different angles are not smooth enough. On
one hand, this is probably caused by the CDFs of the
interpolated angles being influenced by the trend of
other participants, and on the other hand, it also shows
that we may need more data to have better CDFs.

Finally, when comparing the three different deep
learning layers (FF, LSTM and GRU), we can see that
the LSTM outperforms the other two layers in mod-
eling the human-robot proxemics data, as shown in
Figure 8. It is due to the fact that the LSTM based model
has the lowest error in modelling target CDFs.

VII. CONCLUSION

We developed a system that can adapt and predict
comfortable human-robot proxemics. The system first
estimates CDFs of discomfort based on the users’ hand
height. It then uses a neural network architecture to
learn the correspondence between users’ discomfort
and the distances that the robot has travelled towards
the user from three angles. Thereafter, the system gen-
erates probabilities for unseen angles by interpolation
and forms an area where the robot should stop.

Our experiment shows that among the three possi-
ble core layers of the neural network architecture, i.e.
LSTM, GRU and FF layers, the configuration with a
LSTM layer is the best at modelling HRI proxemics
data. The final result in Figure 7 shows that we are
able to produce a distribution estimation from only
three angles. We also argue that because this model is
neural network based and end-to-end trainable, it can
lean from more data without any further modification.

Future work is directed towards improving the qual-
ity of the generated CDFs i.e. generating a probabilistic
distribution with smoother transitions. In addition, we
aim to investigate the performance of the system with
more data and other configurations of the model.
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