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Abstract—In the domain of robotic tutors, personalised
tutoring has started to receive scientists’ attention, but is
still relatively underexplored. Previous work using rein-
forcement learning (RL) has addressed personalised tutor-
ing from the perspective of affective policy learning. How-
ever, little is known about the effects of robot behaviour
personalisation on user’s task performance. Moreover, it is
also unclear if and when personalisation may be more ben-
eficial than a robot that adapts to its users and the context
of the interaction without personalising its behaviour. In
this paper we build on previous work on affective policy
learning that used RL to learn what robot’s supportive
behaviours are preferred by users in an educational sce-
nario. We build a RL framework for personalisation that
allows a robot to select verbal supportive behaviours to
maximise the user’s task progress and positive reactions in
a learning scenario where a Pepper robot acts as a tutor
and helps people to learn how to solve grid-based logic
puzzles. A between-subjects design user study showed that
participants were more efficient at solving logic puzzles
and preferred a robot that exhibits more varied behaviours
compared with a robot that personalises its behaviour by
converging on a specific one over time. We discuss insights
on negative effects of personalisation and report lessons
learned together with design implications for personalised
robots.

I. INTRODUCTION

Robots are now used to support humans in new so-
cial roles, such as providing assistance for the elderly at
home, serving as tutors, acting as therapeutic tools for
children with autism, or as game companions for en-
tertainment purposes [1]. However, human social skills
remain unmatched in robots. To meet the demands of
Europe’s citizens in the 21st century, our prospective
robotic companions need to learn to interact socially
with humans [2] and adapt to their needs, preferences,
interests, and emotions in order to become highly
personalised to their users. Simulating the tremendous
social adaptation abilities that characterise human in-
teractions requires the establishment of bidirectional
processes in which humans and robots synchronise
and adapt to each other in real-time by means of an
exchange of verbal and non-verbal behaviours (e.g.,
facial expressions, gestures, speech) in order to achieve
mutual co-adaptation.

In recent years, technical advances in machine learn-
ing methods [3] have opened the door to new ways of
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building co-adaptive human-robot interactive systems.
In the domain of robotic tutors [4], which are used to
support user learning in instructional scenarios (e.g., in
the classroom or in the factory), personalised tutoring
has started to receive scientists’ attention, but is still
relatively underexplored, especially when it comes to
building robot abilities enabling robots to interact and
adapt to users over extended periods of time.

In the social human-robot interaction (HRI) litera-
ture, personalised tutoring has started to be addressed
from the perspective of affective policy learning: affect
and affect-related states such as engagement have been
used to build reward signals in reinforcement learning
(RL)-based frameworks to select motivational strate-
gies [5] or supportive behaviours [6] personalised to
each student. These works primarily address effects
of personalisation on interaction quality and users’
positive emotions. Other work has shown the positive
effect of modelling learners” skills to deliver person-
alised lessons [7]. However, little is known about the
effects of robot behaviour personalisation on users’ task
performance. Moreover, it is also unclear if and when
personalisation may be more beneficial than a robot
that adapts to its users and the context of the interaction
without personalising its behaviour.

We build on previous work on affective policy learn-
ing that has used RL to learn what supportive be-
haviours of a robot are preferred by users in an educa-
tional scenario [6]. In this work we take a step forward:
we develop an RL framework for personalisation that
allows a robot to select verbal supportive behaviours
to maximize user’s task performance and positive reac-
tions to the robot’s interventions in a learning scenario
where a Pepper ! robot acting as a tutor helps people
learning how to solve grid-based logic puzzles.

We address the following questions: (1) Does a
robot’s behaviour personalisation improve users’ over-
all task performance? (2) Is a personalised robot more
effective than a robot that adapts to its user without
personalising?

We conducted a between-subjects experiment with
two groups of participants, one interacting with a per-
sonalised robot and and one with a non-personalised
one. We found that (1) the time taken to complete the
logic puzzles significantly decreases over the tutoring
sessions for both groups in a similar manner; and (2)
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participants are more efficient at solving logic puzzles
and prefer a robot that exhibits more varied robot
behaviours compared to a robot that personalises its
behaviour by converging on a specific one over time.
We discuss insights on negative effects of personali-
sation and report lessons learnt together with design
implications for personalised robots.

This work is relevant for the development of socially
interactive embodied agents and social robots used to
support users in instructional scenarios. In particular,
this paper makes a contribution towards the develop-
ment of algorithms for human-robot co-adaptation that
enable robots and agents to select effective strategies to
establish long-term relationships with human users.

II. RELATED WORK

Research on robotic tutors has intensified over the
last few years (see, for example, [4] [8]). Several works
have investigated the qualities needed in a robotic
tutor. Saerbeck et. al. [9], for example, analysed the
influence of supportive behaviours in a robotic tutor
on learning performance. They developed supportive
behaviours in the iCat robot to help students in lan-
guage learning, and compared the effects of a robot
with such behaviours with one that did not provide
any social support. They found that the introduction
of social supportive behaviours increased students’
learning performance. Kennedy et al. [10] likewise
investigated the effects of adopting social behaviors.
Their work suggests that a robot capable of tutoring
strategies may lead to better learning. However, the
authors also cautioned that social behaviours in robotic
tutors can potentially distract children from the task at
hand.

Recently, researchers have started to explore how
robots can be used to support personalised learning
[11]. Examples include studies exploring the effects of
personalised teaching and timing strategies delivered
by social robots on learning gains [7], [12] and the
use of personalised robotic tutors to promote the de-
velopment of students’ meta-cognitive skills and self-
regulated learning [13].

Other works have explored personalised tutoring
from the perspective of affective policy learning: af-
fect and affect-related states such as engagement have
been used to build reward signals in reinforcement
learning (RL)-based frameworks to select motivational
strategies [5] or supportive behaviours [6] personalised
to each student. RL-based approaches have also been
proposed to decide how to employ different social be-
haviours to achieve interactional goals in task-oriented
HRI [14]. Moreover, dynamic probabilistic models and
Bayesian networks have been used in robotic tutors to
model learners’ skills and behaviours and their rela-
tionships with a robot’s tutoring actions [15] and to as-
sess learners’ skills to deliver personalised lessons [7].

However, to our knowledge, previous research has
neither explored effects of personalisation that max-
imises users’ positive reactions to the robot and
progress in the task, nor has it investigated whether
there are any possible negative effects of personalisa-
tion.
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Fig. 1. An unsolved nonogram puzzle (left) and its corresponding
solution (right).

III. SCENARIO

We developed a scenario where a Pepper robot act-
ing as a robotic tutor helps people solve grid-based
logic puzzles called nonograms. These puzzles have
previously been used to study robot personalisation to
people’s learning differences [7]. Nonograms have the
advantage of not being well known to most people,
thus ensuring that users interacting with the robot start
the task-oriented interaction with the robot on a similar
skill level.

In the task, the user is asked to solve several nono-
gram puzzles while a Pepper robot stands in front of
the user observing their progress, learning a user model
based on the interaction process, and generating verbal
utterances in order to provide social support to the user
during learning. Robot personalisation to individual
users is achieved by combining a decision tree model
with a Multi-Armed Bandit (MAB) algorithm called
Exponential-Weight Algorithm for Exploration and Ex-
ploitation (Exp3) [16] to learn which robot’s supportive
behaviours (described in Section 3.2) maximise users’
task performance and positive reactions to the robot’s
interventions in the puzzle-solving task.

A. Nonograms

Nonograms are puzzles where cells in a grid must
be filled with black or left blank. In these puzzles, the
numbers indicate how many black lines are needed to
fill continuous lines for each row or column. Figure 1
shows an example of the unsolved Nonogram game
and its corresponding solution.

IV. SYSTEM

The system consists of different components: the
nonogram interface, the user model, and the personali-
sation module, which consists of the Exp3 module and
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Fig. 2. System components. Arrows indicate the flow of information.
The dotted line means that User Model and Personalisation Module
are integrated together as one software system.

an action selection module. Figure 2 shows the rela-
tionships between the different components. The robot
monitors the user’s progress in the task through the
nonogram interface and builds a user model extracting
task indicators that convey information about whether
the user is experiencing difficulties during the puzzle
solving task. If that is the case, the personalisation mod-
ule selects a category of supportive behaviour based on
a policy learned by the Exp3 algorithm. The selected
category will then be passed to an action selection
module using a decision tree, which will choose the
most relevant robot action for the current situation
according to the selected category. In the following
sections, we describe the different components of the
system.

A. User model

The user model extracts a number of task indicators:

o TimeLastMove It measures the time taken to make
the last action.

o TimeLastSetOfMoves It measures the time taken
to make the last N actions, where N is a pre-
defined arbitrary number.

o CorrectMove It measures whether the last action
made by the user is correct or not.

These are used to define a set of rules that assess
whether the user is experiencing difficulties in the
puzzle solving task. The rules take the user’s actions
and their corresponding time into consideration. For
example, if an action took the user more than T seconds
to complete, where T is an arbitrary number, then it
may indicate that the user experienced difficulty in the
last decision.

The user model combines all the information it gath-
ers from the task indicators to make a final decision
whether the robot should generate an action or not.
This decision is then passed to the personalisation
module.

B. Personalisation module

The personalisation module uses an RL-based ap-
proach that learns which supportive behaviours deliv-
ered by the robot maximize the user’s task performance
and positive reactions to the robot’s interventions. The
former is defined as the time taken by the user to
complete the nonogram puzzle. The latter is measured
as positive verbal feedback to verbal supportive be-
haviours displayed by the robot. This is a problem of
policy learning, which in an RL framework means op-
timising action selection policies to maximise a reward.
The general idea here is for the robot to learn a policy of
optimal supportive behaviours that maximises a user’s
task performance and positive reactions to the robot’s
interventions. Building on previous work on affect co-
adaptation mechanisms for a social robot [6], we model
this problem as a Multi-Armed Bandit (MAB) problem
and use an algorithm from the set of MAB learning
algorithms — Exp3 [16]. We chose Exp3 based on the
length of the interactive process in our study and
relative efficiency of the learning algorithm.

1) Supportive behaviours: The robot behaviours in the
form of verbal utterances are designed by adopting
the categorisation proposed by Cutrona [17]. We select
supportive behaviours belonging to four different cat-
egories, namely information support, tangible support,
esteem support and emotional support. It has been
shown that people differ in their preference for support
[18]. In Table I, we give an example of each of the
different categories of supportive behaviour.

Information support
Tangible support

"Do you need more information about the rules?”
"If you feel it is difficult, I can help you by
completing the next one.”

"The game is hard this time.”

”But please don’t worry, I am here for you.”

TABLE 1
EXAMPLES OF SUPPORTIVE BEHAVIOURS IMPLEMENTED IN THE
PEPPER ROBOT .

Esteem support
Emotional support

2) Exp3: We model the optimization of the support-
ive behaviours as a MAB problem. In our case, gener-
ating appropriate behaviours for different participants
is the goal of the algorithm. In the following text, we
explain how the Exp3 algorithm optimises the prob-
ability distribution over all categories of supportive
behaviours.

We connect different categories of supportive be-
haviour with different actions in Exp3. Considering a
process with K different actions, the Exp3 algorithm
[16] functions as described in Algorithm 1, where 7
is the exploration factor, and w; is the weight of each
action i. p;(t) is the probability of selecting action
i at round t, while T means the total number of
iterations. At the beginning, the algorithm initialises
the exploration parameter 7. This parameter adjusts
the possibility that the algorithm attempts to execute



other actions while a certain action already has the
highest probability. Next, the algorithm associates a
weight with each action in order to give each action
a probability to form a distribution over all possible
actions.

After the exploration, the algorithm iterates the
learning procedure T times, in order to learn from the
environment and to generate a better probability distri-
bution to receive more accumulative reward from the
environment. In the learning procedure, the algorithm
selects an action i based on the distribution P, and then
receives a reward x;, (t) from the environment i.e. the
reaction from the user. Thereafter, an estimated reward
%;,(t) is calculated as x;,(t)/p;(t) to further include
the influence of the probability on the reward. In the
end, the algorithm updates the weight associated with
the action, while the weights of other actions (wj, Vj #
it,j € {1,...,K}) remain the same. After the algorithm
converges, the eventual probability distribution over
different actions is considered to be the best (and
sometimes final) strategy of maximising the reward.

Algorithm 1 Exp3

1: procedure INITIALIZATION

2: initialize y € [0,1]
3: initialize w;(1) =1, Vi € {1,...,K}
4: for distribution P, )
w; (t Y .
5: set pi(t) = (1—7) ! +—,Vvie{l,..., K}
Z]K:l w;(t) K
6: end procedure
7: procedure ITERATION
8: repeat
9: draw i; according to P
10: observe reward x;, (t)
11: define the estimated reward #;, (t) to be x;,(t)/pj, (t)
12: set w;, (t+1) = w;, (£)e" i (/K
13: set wi(t+1) = wj(t), Vj #ir and j € {1,..., K}
14: update P:
w; (1) Y o
15: i()=1-7) =+ Vie{l,... K
P = (=) s e (LK)
16: until T times

17: end procedure

To integrate Exp3 in our system, each action in this
algorithm is associated with a possible category of
supportive behaviours, which are described in Table
I. In each iteration, the probability of selecting a cer-
tain action is adapted to the current environment. For
instance, there are four actions (K = 4) in the learning
procedure of algorithm by design, i.e., action 1, 2, 3,
and 4. Respectively, actions 1, 2, 3 and 4 are mapped to
four different categories of supportive behaviours: the
robot can choose to select information support, tangible
assistance, esteem support or emotional support.

That is, if the randomly sampled category of sup-
portive behaviours i is 1, then the robot decides to use
information support. After the algorithm receives the
feedback, the weight of the corresponding action (i.e.,
action 1) is updated based on:

w, (t+1) = wy, (1)1 /4, )

The weights of other actions (i.e., action 2 3, and 4)
stay the same. In the final step, the distribution P
is renewed to prepare for the next iteration round
according to the following formula:

B =1-n= T vicn34.
P = A=)t o e 1234 @
Until then, one learning iteration is done. The iteration
continues in total T times. By design, the system’s
default T value is set to 200 T = 200, which means
a fixed learning period for 200 iterations.

3) Action selection module: After a category of sup-
portive behaviours is selected by the Exp3 algorithm,
the action selection module, which consists of a deci-
sion tree, checks if the selected category is appropriate
to the current situation. If the latter is not appropriate
(for example, when the user has played several games
and makes a mistake at the beginning of a new game,
it is more likely that the user simply made a mistake
and therefore the information support of explaining the
rules of the game is not necessary), the robot will not
perform any action, otherwise the robot will choose a
specific robot action (i.e., supportive behaviour) from a
pool of available actions within that category.

V. METHODOLOGY
A. Experimental set up

The experimental setting included a Pepper robot,
a 27 inches IIYAMA touch screen placed on a table,
an ubuntu 14.04 Linux server, a Logitech C920 1080p
webcam and a laptop. The user was sitting on a chair
in front of the robot, with the touch screen and the table
placed between them, see Figure 3.

The Logitech webcam, positioned on a tripod on the
side of the table, was connected to the laptop to record
videos for offline video analysis. The software ran on
a Linux server and consisted of two parts. One part
contained the nonogram interface that interacted with
the user and an algorithmic module that updated the
parameters for the user model. The other part was
responsible for controlling the robot and generation of
verbal utterances.

Fig. 3. Pepper interacting with a user.



B. Experimental Design and Participants

We performed an experiment with a between-
subjects design, where participants were randomly as-
signed to two different groups (i.e., conditions), cor-
responding to two different parameterisations of the
robot’s behaviour: (1) personalised adaptive group, where
the MAB-based personalisation module was used, vs
random adaptive group, where the robot’s supportive
behaviours were randomly selected.

For the study, we recruited twenty-four (fourteen
females and ten males) university students and re-
searchers, primarily with a computer science back-
ground, took part in the experiment. We then randomly
assigned twelve participants to each group. In the
random adaptive group, four are males and eight are
females. In the personalised random adaptive group,
six are females and six are males.

C. Procedure

The experiment took place in a university labora-
tory environment. Before the experiment started, the
participants received a document that described the
experiment and tasks that they would need to solve
and a consent form that they needed to sign. After
signing the consent form, the participant was asked to
enter the experiment’s area.

During the experiment, each group performed three
sessions, namely a pre-interaction session, a human-
robot interaction session and a post-interaction ses-
sion. In both the pre-interaction and post-interaction
sessions, participants were asked to solve three nono-
gram puzzles of similar difficulty on their own. In the
human-robot interaction session, the participants were
asked to solve three nonogram puzzles with the assis-
tance of a robot. We chose to include three nonograms
in the human-robot interaction session because during
preliminary tests of the system we found that normally
three nonograms are necessary for the robot’s learning
process to converge while making sure the participant
is not frustrated by the long interaction. In the human-
robot interaction session, participants were informed
that, after each supportive behaviour used by the robot,
they had the possibility to give verbal feedback to the
robot, in case they appreciated, or not, what the robot
said. More specifically, participants were instructed to
either ignore the robot (when they did not like what the
robot said) or reply by saying “thank you” to the robot
(when they liked what the robot said). This information
is used, alongside with task performance, to calculate
the reward function in the RL-based personalisation
module.

After the post-interaction session the participant was
asked to walk out of the experimental area and the
researcher conducted a very short interview and asked
the participants to fill in a set of questionnaires to col-
lect information on the user experience and perception
of the robot.

Normally, due to learning effects, the average time
taken to solve nonogram puzzles in the post-interaction
session is shorter than the average time taken to solve
nonogram puzzles in the pre-interaction session. Here,
we are interested in whether personalisation affects the
time taken by people to solve the puzzle, i.e., if in the
personalised adaptive group, the difference in the time
taken by people to solve the puzzle between pre- and
post- interaction session is more obvious.

D. Measures

Task performance. To measure task performance,
we calculated the average amount of time taken by
participants to complete the three puzzles in the pre-
interaction session and the three puzzles in the post-
interaction session. We computed the difference be-
tween these average values for both groups of partici-
pants for further analysis and comparison, as detailed
in the next section.

Personalisation algorithm’s output. We extracted
the output of the personalisation algorithm to assess
the probability with which each robot’s supportive be-
haviour was selected when the personalisation process
was completed.

Quality of interaction. We measured quality of in-
teraction using a set of affective, friendship, and social
presence dimensions that have been previously shown
to be successful in measuring the influence of a robot’s
behaviour on the relationship between the robot itself
and participants [19]. Participants were asked to rate
these dimensions throughout the interaction using a 5-
point Likert scale, where 1 meant “totally disagree” and
5 meant “totally agree”. For each dimension presented
below, we considered the average ratings of all the
questionnaire items associated to it.

Social engagement: this metric has been extensively
used to measure both human-human [20] and humans-
robot [21] quality of interaction. The engagement ques-
tionnaire we used was based on the questions formu-
lated by Sidner et al. [21].

Help: measures how the robot is perceived to have
provided guidance and other forms of aid to the user.
In particular, we refer to help as a friendship dimension
that measures the degree to which a friend fullfils a
support function existing in most friendship defini-
tions, as suggested by Mendelson and Aboud in the
McGill Friendship Questionnaire [22].

Self-validation: another friendship dimension taken
from the McGill Friendship Questionnaire [22]. It has
been used to measure the degree to which children
perceived the robot as reassuring and encouraging, and
helped the children to maintain a positive self-image.

Perceived affective interdependence: this dimension mea-
sures social presence, that is, “the degree to which
a user feels access to the intelligence, intentions, and
sensory impressions of another” [23]. Here, perceived
affective interdependence measured the extent to which



the user’s emotional states were perceived to affect and
be affected by the robot’s behaviours.

User preferences. We collected participants’ pref-
erences for the robot’s supportive behaviours using
questionnaires. Participants were asked to indicate how
much they liked each category of robot’s behaviour on
a scale from 1 to 5.

VI. RESULTS

A. Task performance

In order to analyze the effect in the experiments, a
mixed ANOVA was used to compare the difference
between the time taken to complete the puzzles in the
pre-interaction session and the time taken to complete
them in the post-interaction session. Figure 4 shows
the mean and standard deviation of average time
difference between pre-interaction and post-interaction
sessions. There is an overall time improvement for
the time difference between pre-interaction session and
post-interaction session (F(1,20) = 42,524, p < 0.05,
partial 2 = 0.680). Although in the random adaptive
group the time difference (M = 153.85, SD = 97.15) is
larger than in the personalised adaptive group (M =
128.55,SD = 89.30), the result was not significant
(F(1,20) = 0.07, p > 0.05, partial #2 = 0.004).
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Fig. 4. The mean and standard deviation of average time difference
between pre-interaction session and post-interaction session.

B. Learning algorithm’s performance

In order to show the optimization process during
the human-robot interaction session, we would like to
present an example of the output of the algorithm.
Figure 5 illustrates that the algorithm tries to person-
alise towards a specific participant in the session. In
this case, the esteem support and emotional support
are the most preferred categories. The most preferred
categories are different for each participant.
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Fig. 5. An optimization process over a human-robot interaction
session. For this participant, esteem support and emotional support
are the most preferred categories.

C. Participants’ preferences and quality of interaction

To compare the output of the personalisation algo-
rithm with the participants” preferences of the robot’s
behaviour we define a similarity metric.

We converted the data on the participants’ prefer-
ences from the questionnaires to a probability distribu-
tion using the following formula:

. Xi — 1

Yia(xi—1)
Where x; is the score of the preferred category i, given
by a participant.

In order to compare the participants” preferences P
with the output of the algorithm O, we use a metric
called Hellinger distance [24] to quantitatively analyze
how much do these two distributions differ from each
other. The Hellinger distance is defined as follows:

pi 3)

H( (4)

1 1
P.O)= —

Q) ﬁ\/Z?_l(\/ﬁ— Nk
Where p; and g; are discrete numbers of two different
distributions defined as O and P.

Figure 6 shows results of the calculated Hellinger
distances for the two groups. We observe that the
average Hellinger distance is smaller for the random
adaptive group. We conducted a Mann-Whitney U test
and found that the difference between the two groups
is significant (1(22) = —2.03, p < 0.05).

We assess the quality of interaction with the robot
using a set of social dimensions, as discussed in Sec-
tion V. For each dimension we considered the average
ratings of all the questionnaire items associated to it.
A t-test was conducted to compare the two groups
of participants. We did not find any significant differ-
ences between the two groups in terms of engagement
(£(94) = 1.36,p > 0.05), help (t(70) = 1.18,p > 0.05),
self-validation (t(46) = 1.05,p > 0.05) and perceived
affective interdependence (f(46) = 0.93,p > 0.05)
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Fig. 7. This figure shows the average scores of the four dimensions
of quality of interaction considered in our study.

Figure 7. However, when we analysed the individ-
ual questions for each dimension, we observed one
significant result in one question in the engagement
questionnaire: we found that participants felt more
engaged with the robot in the random adaptive group
(t(22) =2.07,p < 0.05).

VII. DISCUSSION

(1) Does a robot’s behaviour personalisation improve
users’ overall task performance?

Our results showed that the time taken to complete
the logic puzzles significantly decreased in both groups
over the tutoring sessions. When we compare the dif-
ference between the average time taken to complete
the three puzzles in the pre-interaction session and
the average time taken to complete the three puzzles
in the post-interaction session, we can observe that
this difference is slightly higher for the participants
in the random adaptive group. Although this result
is not significant, it seems to suggest that participants
are more efficient at solving logic puzzles when the

robot does not attempt to personalise its supportive
behaviour. This result is in line with previous work
that showed that a robot that is too social and adaptive
may not lead to increased learning gain in a tutoring
scenario [10]. It must also be pointed out that people
may not always need to hear feedback they like in
order to learn better. Previous work in educational
psychology, for example, discusses how giving praise
may undermine learning motivation [25]. A teacher (or
robot) that praises can be perceived very positively by
children, but it does not necessarily mean it is good
for them. Similarly, personalising to other kinds of
supportive behaviours may have similar effects.

(2) Is a personalised robot more effective than a robot that
adapts to its user without personalising?

The analysis on the similarity metric based on the
Hellinger distance showed that participants’ prefer-
ences for the robot’s behaviours (i.e., collected via
the Likert scale questions in the questionnaires) are
more aligned with how the robot selects its supportive
behaviour when it does not use personalisation. In
other words, people might prefer to interact with a
robot that exhibits more varied behaviours (i.e., a robot
that selects different types of supportive behaviours
with equal probability) compared with a robot that
converges on selecting more often the behaviour that,
for each participant, maximises the participant’s pos-
itive reactions to it and task performance. Moreover,
as far as measures of quality of interaction are con-
cerned, there was no difference in how participants
perceived the robot in terms of social engagement, help,
self-validation and affective interdependence, except
for one question concerning social engagement, which
suggests that participants were more engaged with the
robot that did not personalise its behaviour.

There are some considerations to make when in-
terpreting these results. By selecting the supportive
behaviours in a more balanced manner, the non-
personalised robot may be perceived as less predictable
than the personalised robot, thus possibly appearing
as more interesting to interact with. We observed that
the learning algorithm was successful at converging
to a specific behaviour for each participant (meaning
that such a behaviour is eventually selected more often
than others), which seems to suggest that a longer
learning session may not be necessary. There could
be, however, a need for a more balanced trade-off
between exploration and exploitation in the learning
process. Moreover, participants may not express their
real preferences by providing verbal feedback to the
robot, which suggests that this aspect requires further
investigation, both from an interaction design and an
algorithmic perspective. However, it could also simply
be that personalising a robot’s behaviours to maximise
a user’s positive reactions to them does not help,
as also suggested by studies in other domains [25]
and discussed above. Therefore, a stronger focus on



maximising task performance might be needed when
designing a personalisation framework. Although not
the focus of this paper, an analysis of the interview
material that we collected might offer more insights
towards answering these questions.

VIII. CONCLUSION

This work investigated the effects of a robot’s be-
haviour personalisation on user’s task performance
and perception of the robot in a robot-supported learn-
ing scenario. We found that people are more efficient at
solving logic puzzles and prefer a robot that exhibits
more varied behaviours compared with a robot that
personalises its behaviour by converging on a specific
one over time. Our interpretation is that (1) the robot
does learn which behaviours maximise users’ positive
reactions throughout the interaction, but (2) this does
not necessarily mean that, after having experienced
the whole interaction, users prefer a robot that per-
sonalises in this manner. Following in the steps of
Kennedy and colleagues [10], we conclude that caution
is needed when designing social and adaptive robot
behaviours to support people’s learning. While other
studies showed a positive effect of robot personalisa-
tion on task performance and quality of interaction, this
work confirms that little is known about the effects of
a robot’s social behaviour personalisation on user task
performance. Therefore, we suggest that more work
needs to be conducted to assess the real implications
of personalisation in complex scenarios with both a
social and a task component, such as robot-supported
learning.
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